

Showcase and Comparison of Three Methods for Visualizing Near-Earth Satellite Conjunction Events

Erick H. White ¹ Luis G. Baars ¹

¹Omitron Inc.

Overview

- Conjunction assessment is a cornerstone of modern space safety
- Reliable visualization of the space environment can benefit operators and analysts alike
- Three new/extended methods provide more robust visualization of unusual conjunction geometries

Motivation

• Current conjunction visualization methods (Figure 1) fail when key probability of collision (P_c) calculation assumptions are violated

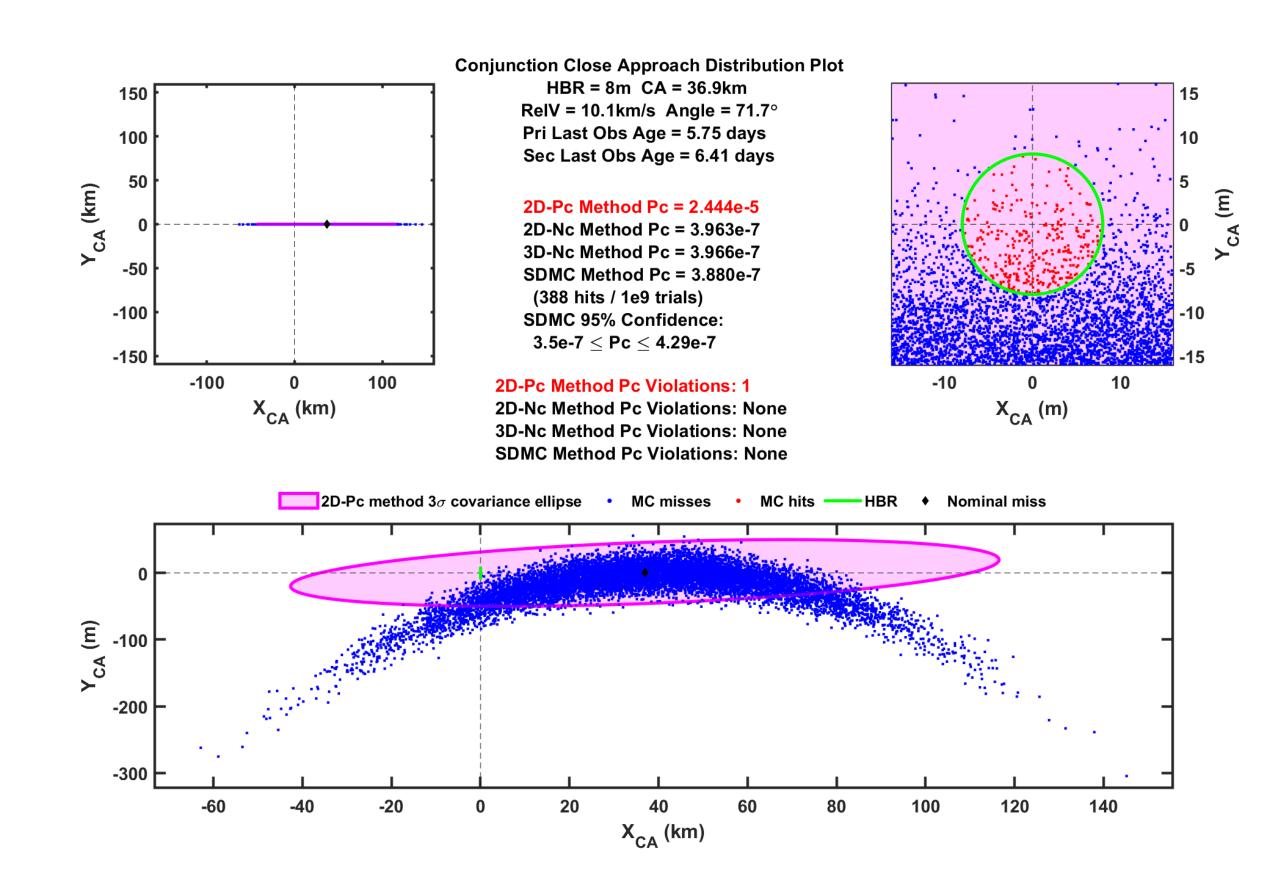


Figure 1. An example of a conjunction plane plot for a case in which it fails to accurately capture the conjunction environment.

Methodology

- Implemented three visualization methods (ellipsoid, bananoid, and point cloud)
- Tested visualization methods against a variety of conjunction geometries to determine best and worst cases for a given method

Results P_c -2D: 2.44E-05 (METHOD VIOLATION) N_c -2D: 3.96E-07 N_c -3D: 3.97E-07 Peak Rate Time (+TCA): 2.324 s Combined HBR: 8.0 m P_c -2D: 2.44E-05 (METHOD VIOLATION) N_c -2D: 3.96E-07 N_c -3D: 3.97E-07 Peak Rate Time (+TCA): 2.324 s Combined HBR: 8.0 m P_c -2D: 2.44E-05 (METHOD VIOLATION) N_c -2D: 3.96E-07 N_c -3D: 3.97E-07 Peak Rate Time (+TCA): 2.324 s Combined HBR: 8.0 m

Figure 2. Illustrations of the ellipsoid (top), bananoid (middle), and point cloud (bottom) visualization methods for the conjunction illustrated in Figure 1, which includes a non-rectilinear pass and therefore fails $2D-P_c$ and the ellipsoidal visualization.

Method Details

Ellipsoid

- Represents uncertainty distributions as shells corresponding to a desired n- σ surface in Cartesian space
- Simple to derive and visualize from covariance matrices
- Applicable to typical conjunction geometries

Bananoid

- Represents uncertainty distributions as shells corresponding to a desired n- σ surface in equinoctial space
- Moderately computationally intensive, but accurate for conjunctions where rectilinear assumptions are violated

Point Cloud

- Represents
 uncertainty
 distributions as a
 set of samples
 drawn directly
 from the
 underlying
 distribution in
 equinoctial space
- Computationally intensive, but free of underlying assumptions used in ellipsoid and bananoid methods

Conclusions

- The bananoid method is versatile and best suited to a wide variety of conjunction geometries
 - Effective for a wide range of relative velocities and clock angles, as well as for extended-duration conjunctions
- Direct visualization provides an advantageous understanding of the three-dimensional conjunction environment
- Visualization methods can accompany P_c calculations to improve understanding of conjunction events

Future Work

- Extension to cislunar and beyond conjunctions
 - Need new formulations that do not depend on equinoctial coordinates
 - New challenges associated with deep-space orbit determination
- Three-dimensional one-surface/one-cloud visualizations
 - Closer analog to CARA's current conjunction plane plots
 - Better parallels some calculations for determining P_c